Extended Parrondo's game and Brownian ratchets: strong and weak Parrondo effect.
نویسندگان
چکیده
Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin p(b) is used, otherwise a favorable p(g) coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M(1) or M(2). Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M(2) is not a multiple of M(1), the combination of B(M(1)) and B(M(2)) has strong and weak Parrondo effect for some subsets in the parameter space (p(b),p(g)), while there is neither strong nor weak effect when M(2) is a multiple of M(1). Furthermore, when M(2) is not a multiple of M(1), a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.
منابع مشابه
Fe b 20 04 Parrondo ’ s games and the zipping algorithm
We study the relation between the discrete–time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of information – negentropy – between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good ...
متن کاملBrownian ratchets and Parrondo's games.
Parrondo's games present an apparently paradoxical situation where individually losing games can be combined to win. In this article we analyze the case of two coin tossing games. Game B is played with two biased coins and has state-dependent rules based on the player's current capital. Game B can exhibit detailed balance or even negative drift (i.e., loss), depending on the chosen parameters. ...
متن کامل] 2 9 A ug 2 00 3 Discrete - time ratchets , the Fokker - Planck equation and Parrondo ’ s paradox
Parrondo's games manifest the apparent paradox where losing strategies can be combined to win and have generated significant multidisciplinary interest in the literature. Here we review two recent approaches, based on the Fokker-Planck equation , that rigorously establish the connection between Parrondo's games and a physical model known as the flashing Brownian ratchet. This gives rise to a ne...
متن کاملNew paradoxical games based on brownian ratchets
Based on Brownian ratchets, a counterintuitive phenomenon has recently emerged-namely, that two losing games can yield, when combined, a paradoxical tendency to win. A restriction of this phenomenon is that the rules depend on the current capital of the player. Here we present new games where all the rules depend only on the history of the game and not on the capital. This new history-dependent...
متن کاملBrownian motion and gambling: from ratchets to paradoxical games
Two losing gambling games, when alternated in a periodic or random fashion, can produce a winning game. This paradox has been inspired by certain physical systems capable of rectifying fluctuations: the so-called Brownian ratchets. In this paper we review this paradox, from Brownian ratchets to the most recent studies on collective games, providing some intuitive explanations of the unexpected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2014